PH4 Mark scheme – January 2011

Que	Question		Marking details	Marks Available
1.	(a)	(i)	$pV = \frac{1}{3}Nm\overline{c^2}$ or $p = \frac{1}{3}\rho\overline{c^2}$ used. (1) Correct use of N and m or $\rho = 11.0 \text{ kg m}^{-3}$ (1) $c_{\text{r.m.s.}} = 286 \text{ m s}^{-1}$ (1)	3
		(ii)	$M_r = \frac{1.39 \times 10^{-25}}{1.66 \times 10^{-27}} \text{ (1)} = 84 \text{ (1)} [\text{or } M_r = m/\text{g} \times N_\text{A}] \text{ [No unit penalty]}$ [N.B. Alternatives available: 1 mark method; 1 mark answer – factor of 10^3 error \rightarrow method mark available]]	2
		(iii)	$pV = nRT \underline{\text{used}}$ (1) $n = \frac{1.7 \times 10^{20}}{6.02 \times 10^{23}}$ (1) [N.B. The mark might be earned in (ii)] T = 275 K (1)	3
	(b)		Gets bigger (1) because pressure decreases [and <i>T</i> is ~ constant] (1). [Accept: because it collects dissolved gas(es) or because temperature increases as bubble rises]]	2
				[10]
2.	(a)		$\Delta V = 0$ / no change in volume	1
	(b)		Work done = area under graph or by impl. [i.e. area calc attempt] (1) Work done [= $[-]1.5 \times 10^5 \times 4.0 \times 10^{-3}]$ = [-] 600 J (1) Minus sign (1) [free-standing mark] [NB Any reasonable method of determining area, including counting squares \checkmark]	3
	(c)		 ΔU: change [or increase] in internal energy of(1) Q: heat supplied ["heat in" etc. – direction must be indicated] to(1) W: work done by(1) [NB: not "by or on"] [Subtract 1 mark if "gas" or "system" not mentioned at least once]. 	3
	(d)		Attempt at area inside the cycle or Area $_{BC}$ – Area $_{DA}$ (1) Area / W [= 0.675× 10 ⁵ × 4.0 × 10 ⁻³ – 600] = – 350 J (1) $\therefore Q = -350 \text{ J}$ (1) [NB final step must be explicit – leaving answer for W doesn't gain the final mark]	3
			77 GOOST C gain the final mark)	[10]

Question	Marking details	Marks Available
3	Sample answer: Microwave oven [although away from central resonance] (1). Driving force: the [e-m fields of the] microwaves (1) Oscillating System: rotation [accept vibration] of water molecules (1) Result: Increased [accept large amplitude] rotational k.e. (1) General scheme: 4 distinct points needed → 4 × (1) Diagram / statement of application [e.g. bridge, car rattle] ✓ Description of plausible oscillating driving force ✓ Description of plausible system ✓	
	Large <u>amplitude</u> because of same frequency [or graph showing	4
	resonance, with labelled axes]√	[4]
4. (a)	$r_1 = \frac{m_2}{m_1 + m_2} d$ used [or $m_1 r_1 = m_2 r_2$] (1) $r_1 = 7.43 \times 10^8$ m (1)	2
(b)	Use of relevant eq ⁿ : $T = 2\pi \sqrt{\frac{d^3}{G(m_1 + m_2)}}$ or $2\pi \sqrt{\frac{d^3}{GM}}$ or $\frac{GM}{r^2} = \frac{mv^2}{r}$ (1) $T = 3.75 \times 10^8 \text{ s (1)}$ Division by $(24 \times 60 \times 60 \times 365[.25])$ or equiv (1) [=11.88 year]	3
(c)	$v = \frac{2\pi r}{T}$ [or $v = \omega r$ and $\omega = \frac{2\pi}{T}$] (1)	
	$v = \frac{2\pi \times \text{answer } (a)}{\text{answer } (b)}$ (1) [= 12.46 m s ⁻¹]	2
(d)	Doppler shift calculated: $\frac{\Delta \lambda}{\lambda} = \frac{v}{c} \rightarrow \Delta \lambda = \frac{v\lambda}{c} = 5.3 \times 10^{-14} \text{ m (1)}$ Upper λ value labelled: $1.28 \ \mu\text{m} / \lambda_{[0]} + 5.3 \times 10^{-14} \text{ m (1)}$ Lower λ value labelled: $1.28 \ \mu\text{m} / \lambda_{[0]} - 5.3 \times 10^{-14} \text{ m (1)}$ [Alternatively for 2^{nd} and 3^{rd} marks, indication on the graph that the amplitude of the variation is $5.3 \times 10^{-14} \text{ m}$, e.g. peak to peak $\Delta \lambda$ is shown as $10.6 \times 10^{-14} \text{ m}$]	
	Period labelled: 12 years / 3.75×10^8 s (1)	4
		[11]

Question		Marking details	Marks Available
5.	(a)	[centripetal force =] $m\omega^2 r$ [or $\omega^2 r$ and ma] (1) $F = 32.5 \times 1.4^2 r$ [= 63.7 r] (1) Friction [of the surface on the shoes] provides centripetal force [or is the resultant etc.] (1) [Accept $F = m\omega r^2$ for 1 st and 3 rd marks as F is defined in the question]	3
	(b)	63.7 $r = 114$ [N] (1) r = 1.79 and relevant comment, e.g. if r greater, $F > 114$ N (1) [Alt: Subst $r = 1.8$ m and comment that $F > 114$ N]	2
	(c)	$T = \frac{2\pi}{\omega}$ [or by impl.] (1) = $\left[\frac{2\pi}{1.4}\right]$ = 14.49 s (1)	2
	(d)	$v = \omega A$ [or by impl.] (1) = [1.4 × 1.8 =] 2.52 m s ⁻¹ (1) [If $v = A\omega \cos \omega t$, or equiv, then $\cos \omega t = 1$ must be stated for 1 st mark]	2
	(e)	$a = \omega^2 A$ [or by impl.] (1) = [1.4 ² × 1.8 =] 3.53 m s ⁻² (1) occurs at the extremities / when $x = \pm A$ etc. (1) [If $a = A \omega^2 \cos \omega t$, or equiv, then $\cos \omega t = 1$ must be stated for 1 st mark]	3
	(f)	At least one cycle of wave drawn with correct amplitude [1.8 m e.c.f.] (1) Reasonable shape of sinusoid + correct period + correct phase [i.e. sin wave] (1)	2
	(g)	Use of $-1.00 = \sin \omega t$ (1) $1.4t = \sin^{-1} \left(\frac{-1}{1.8}\right)$ (1) $[= -0.59]$ $t = -0.42 \text{ s}$ (1) [Mysterious loss of $-$ sign loses 1 mark] $\frac{\pm 0.1 \text{ s}}{4.0, 4.1 \text{ s}} \checkmark$	
		$t_1 = \frac{T}{2} + 0.42 [2.42 \text{ s}] \text{ and } t_2 = T - 0.42 [4.07 \text{ s}] (1)$	4
			[18]

Que	stion	Marking details	Marks Available
6.	(a)	$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{519.8 \times 10^{-9}} = 1.275 \times 10^{-27} \text{ kg m s}^{-1} / \text{Ns ((unit))}$	1
	(b)	$p = mv = 9.11 \times 10^{-31} \times 1400 \text{ (1)}$ = 1.275 × 10 ⁻²⁷ kg m s ⁻¹ ∴ momenta cancel or sum = 0. [Comment needed] (1)	2
	(c)	Yes – momenta cancel afterwards also. [i.e. Yes + sensible comment, e.g. reflection symmetry, e.g. wavelength and speed unchanged. Accept mention of C of M frame]	1
	(d)	Loss of photon energy (1) = gain in kinetic energy [of electron] (1) ["Photon energy decreases; Electron KE increases" \rightarrow 1 mark]	2
			[6]
7.	(a)	<u>Use</u> of $\frac{GMm}{r^2}$ (1)[or by impl.] = $\frac{6.67 \times 10^{-11} \times 1.99 \times 10^{30} \times 1.31 \times 10^{22}}{(7.38 \times 10^{12})^2}$ Force = 3.19×10^{16} N (1)	2
	(b)	$\frac{GM_1}{r_1^2} = \frac{GM_2}{r_2^2} (1)$ $\frac{r_2^2}{r_1^2} = \frac{m_2}{m_1} (1)$ $\frac{m_1(d - r_1)^2}{r_1^2} = \frac{m_2}{m_2} (1)$ $\frac{m_1(d - r_1)^2}{r_1^2} = \frac{m_2}{m_2} (1)$ $\frac{m_1(d - r_1)^2}{r_1^2} = \frac{m_2}{m_1} (1)$	4
	(c)	GPE = $[-]\frac{GMm}{r}$ [or $V = [-]\frac{GM}{r}$ and GPE = $m\Delta V$] (1) Attempt at calculating 2 PEs or 2 Vs (1) [PEs: -2.36×10^{29} and -3.92×10^{29} , Vs: 1.8×10^7 and 3.0×10^7] $\Delta E_k = [-]\Delta E_p = 1.56 \times 10^{29}$ J (1) e.c.f. i.e. the mark is for equating the gain of KE to the loss in PE.	3
			[9]

Que	Question		Marking details	Marks Available
8.	(a)		At least 2 field lines shown with correct direction (1) At least two equipotentials surfaces shown [reasonable sketch circles centred on -Q] (1) Labelling (1)	
				3
	(b)	(i)	<u>Use</u> of $F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2}$ (1) = 5.62 N (1)	2
		(ii)	Use of $V = \frac{1}{4\pi\varepsilon_0} \frac{Q_1}{r}$ and $\Delta E_p = q\Delta V$ or use of $E_p = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r}$ (1) $\Delta E_p = [-] \ 0.45 \ J \ (1)$ $\therefore E_{k \ [max]} = 0.45 \ J \ [explicit] \ (1)[NB \ Free-standing \ mark - awarded \ if KE \ gain = PE \ loss \ stated]$	3
	(c)		Use of $E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} (1) = 2.81 \times 10^6 \text{ V m}^{-1} (1)$ Horizontal cpts cancel : direction down [could be in diagram] or stated algebraically, e.g. $2E \cos \theta(1)$	
			$E_{\text{res}} = 2E \sin \theta = 2 \times \frac{3}{5} \times 2.81 \times 10^6 = 8.6 \times 10^6 \text{ V m}^{-1} \text{ [or N C}^{-1] (1)}$	4
			((unit))	[12]

GCE Physics MS - January 2011